The Voigt Regularization for Inviscid Hydrodynamic Models - In honor of the 60th birthday of Peter Constantin -

> Adam Larios¹ Evelyn Lunasin² Edriss S. Titi^{3,4}

¹Texas A&M Univseristy, College Station, TX, USA

²University of Michigan, Ann Arbor, MI, USA

³University of California, Irvine, CA, USA

⁴Weizmann Institute of Science, Rehovot, Israel

14 Oct. 2011 Carnegie Mellon University

Outline

$\alpha\text{-}\mathsf{Models}$ of Turbulence

Viscous Camassa-Holm Equations (NS- α , LANS- α)

$$\begin{cases} \frac{\partial}{\partial t} \mathbf{v} + (\mathbf{u} \cdot \nabla) \mathbf{v} - \sum_{j=1}^{3} v_j \nabla u_j = -\nabla \pi + \nu \triangle \mathbf{v} \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{v} = \mathbf{u} - \alpha^2 \triangle \mathbf{u} \end{cases}$$

α -Models of Turbulence

Viscous Camassa-Holm Equations (NS- α , LANS- α)

$$\begin{cases} \frac{\partial}{\partial t} \mathbf{v} + (\mathbf{u} \cdot \nabla) \mathbf{v} - \sum_{j=1}^{3} v_{j} \nabla u_{j} = -\nabla \pi + \nu \triangle \mathbf{v} \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{v} = \mathbf{u} - \alpha^{2} \triangle \mathbf{u} \end{cases}$$

- Leray- α Model (Cheskidov, Holm, Olson, Titi, 2005)
- <u>Clark-α Model</u> (Clark, Ferziger, Reynolds, 1979; C. Cao, Holm, Titi, 2005)
- <u>Simplified Bardina Model</u> (Layton, Lewandowski 2006; Y. Cao, Lunasin, Titi, 2006)
- Modified Leray- α Model (Ilyin, Lunasin, Titi, 2006)

The Simplified Bardina Model

The Simplified Bardina Model (Layton, Lewendowski 2006; Cao, Lunasin, Titi 2006)

$$\begin{cases} \partial_t (\mathbf{u} - \alpha^2 \triangle \mathbf{u}) + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle (\mathbf{u} - \alpha^2 \triangle \mathbf{u}) + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

The Simplified Bardina Model

<u>The Simplified Bardina Model</u> (Layton, Lewendowski 2006; Cao, Lunasin, Titi 2006)

$$\begin{cases} \partial_t (\mathbf{u} - \alpha^2 \triangle \mathbf{u}) + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle (\mathbf{u} - \alpha^2 \triangle \mathbf{u}) + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

The Inviscid Simplified Bardina Model (Euler-Voigt Model) (Cao, Lunasin, Titi 2006)

$$\begin{cases} \partial_t (\mathbf{u} - \alpha^2 \Delta \mathbf{u}) + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

The Simplified Bardina Model

<u>The Simplified Bardina Model</u> (Layton, Lewendowski 2006; Cao, Lunasin, Titi 2006)

$$\begin{cases} \partial_t (\mathbf{u} - \alpha^2 \Delta \mathbf{u}) + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta (\mathbf{u} - \alpha^2 \Delta \mathbf{u}) + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

The Inviscid Simplified Bardina Model (Euler-Voigt Model) (Cao, Lunasin, Titi 2006)

$$\begin{cases} \partial_t (\mathbf{u} - \alpha^2 \Delta \mathbf{u}) + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

The Navier-Stokes-Voigt Model

4

$$\begin{cases} \partial_t (\mathbf{u} - \alpha^2 \triangle \mathbf{u}) + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

The Voigt Regularization

The Voigt α -Regularization

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt $\alpha\text{-Regularization}$

• Introduced by Oskolkov (1973) as a model for polymeric fluids.

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt $\alpha\text{-Regularization}$

- Introduced by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt $\alpha\text{-Regularization}$

- Introduced by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.

4

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt $\alpha\text{-Regularization}$

- Introduced by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu > 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt $\alpha\text{-Regularization}$

- Introduced by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu > 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).
- Global regularity in periodic case, with $\nu = 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- Introduced by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu > 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).
- Global regularity in periodic case, with $\nu = 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).
- The parabolic character of the equations is destroyed.

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt α -Regularization

- Introduced by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu > 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).
- Global regularity in periodic case, with $\nu = 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).
- The parabolic character of the equations is destroyed.
- Global attractor is comprised of analytic functions (for analytic f) (Kalantarov, Levant, Titi, 2009).

$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Some Properties of the Voigt $\alpha\text{-Regularization}$

- Introduced by Oskolkov (1973) as a model for polymeric fluids.
- Same steady states as Navier-Stokes (or Euler) Equations.
- Regularization is inviscid.
- Global regularity in bounded domains, with $\nu > 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).
- Global regularity in periodic case, with $\nu = 0$ (Y. Cao, Lunasin, Titi, 2006; Larios, Titi, 2010).
- The parabolic character of the equations is destroyed.
- Global attractor is comprised of analytic functions (for analytic f) (Kalantarov, Levant, Titi, 2009).
- Applications to image inpainting. (Ebrahimi, Holst, Lunasin, 2009)

The Navier-Stokes-Voigt Model

Question:

Does the Navier-Stokes-Voigt model have the same statistics as the Navier-Stokes equations?

The Navier-Stokes-Voigt Model

Question:

Does the Navier-Stokes-Voigt model have the same statistics as the Navier-Stokes equations?

• Stationary statistical solutions of the Navier-Stokes-Voigt model converge to a stationary statistical solution of the Navier-Stokes Equations. (Ramos, Titi, 2009)

The Navier-Stokes-Voigt Model

Question:

Does the Navier-Stokes-Voigt model have the same statistics as the Navier-Stokes equations?

- Stationary statistical solutions of the Navier-Stokes-Voigt model converge to a stationary statistical solution of the Navier-Stokes Equations. (Ramos, Titi, 2009)
- Sabra Shell model of Turbulence (Constantin, Levant, Titi, 2007)

The Navier-Stokes-Voigt Model

Question:

Does the Navier-Stokes-Voigt model have the same statistics as the Navier-Stokes equations?

- Stationary statistical solutions of the Navier-Stokes-Voigt model converge to a stationary statistical solution of the Navier-Stokes Equations. (Ramos, Titi, 2009)
- Sabra Shell model of Turbulence (Constantin, Levant, Titi, 2007)
- Computational Study with Sabra Shell Model: Structure functions of the Navier-Stokes-Voigt regularization are investigated in comparison to the those of the Navier-Stokes in the context of Sabra Shell Model. (Levant, Ramos, Titi, 2009)

Navier-Stokes-Voigt: Sabra Shell Model

Image Credit: Levant, Ramos, Titi, Comm. Math. Sci., 2009.

Navier-Stokes-Voigt: Sabra Shell Model

Navier-Stokes-Voigt: 3D DNS Study

Joint with: Petersen, Wingate, Titi

Adam Larios (Texas A&M)

14 Oct. 2011	7 / 24
--------------	--------

Voigt Models

The Character of the Voigt Regularization

The Character of the Voigt Regularization

The Character of the Voigt Regularization

(Voigt)
$$\begin{cases} -\alpha^2 u_{xxt} + u_t = \nu u_{xx} \text{ on } (0, 2\pi) \times (0, T) \\ u(0, x) = u_0(x) \text{ on } (0, 2\pi) \end{cases}$$

The Character of the Voigt Regularization

$$(\text{Voigt}) \begin{cases} -\alpha^2 u_{xxt} + u_t = \nu u_{xx} \text{ on } (0, 2\pi) \times (0, T) \\ u(0, x) = u_0(x) \text{ on } (0, 2\pi) \\ \sum_{k \in \mathbb{Z}} (\alpha^2 k^2 + 1) \hat{u}_t^k e^{ikx} = \nu \sum_{k \in \mathbb{Z}} (-k^2) \hat{u}^k e^{ikx} \end{cases}$$

The Character of the Voigt Regularization

$$\begin{aligned} (\text{Voigt}) \begin{cases} -\alpha^2 u_{xxt} + u_t &= \nu u_{xx} \text{ on } (0, 2\pi) \times (0, T) \\ u(0, x) &= u_0(x) \text{ on } (0, 2\pi) \\ \sum_{k \in \mathbb{Z}} (\alpha^2 k^2 + 1) \hat{u}_t^k e^{ikx} &= \nu \sum_{k \in \mathbb{Z}} (-k^2) \hat{u}^k e^{ikx} \\ \hat{u}_t^k &= \frac{-\nu k^2}{\alpha^2 k^2 + 1} \hat{u}^k \end{aligned}$$

The Character of the Voigt Regularization

$$\begin{aligned} (\text{Voigt}) \begin{cases} -\alpha^2 u_{xxt} + u_t &= \nu u_{xx} \text{ on } (0, 2\pi) \times (0, T) \\ u(0, x) &= u_0(x) \text{ on } (0, 2\pi) \end{cases} \\ \sum_{k \in \mathbb{Z}} (\alpha^2 k^2 + 1) \hat{u}_t^k e^{ikx} &= \nu \sum_{k \in \mathbb{Z}} (-k^2) \hat{u}^k e^{ikx} \\ \hat{u}_t^k &= \frac{-\nu k^2}{\alpha^2 k^2 + 1} \hat{u}^k \\ \hat{u}_t^k &= \hat{u}_0^k \exp\left(\frac{-\nu k^2}{\alpha^2 k^2 + 1} t\right) \end{aligned}$$

The Character of the Voigt Regularization

Heat equation: $u_t = \nu u_{xx}$

$$(\text{Voigt}) \begin{cases} -\alpha^2 u_{xxt} + u_t = \nu u_{xx} \text{ on } (0, 2\pi) \times (0, T) \\ u(0, x) = u_0(x) \text{ on } (0, 2\pi) \end{cases}$$
$$\sum_{k \in \mathbb{Z}} (\alpha^2 k^2 + 1) \hat{u}_t^k e^{ikx} = \nu \sum_{k \in \mathbb{Z}} (-k^2) \hat{u}^k e^{ikx} \\ \hat{u}_t^k = \frac{-\nu k^2}{\alpha^2 k^2 + 1} \hat{u}^k \\ \hat{u}_t^k = \hat{u}_0^k \exp\left(\frac{-\nu k^2}{\alpha^2 k^2 + 1} t\right) \end{cases}$$

• Coefficients do not decay exponentially as $t \to \infty$.

The Character of the Voigt Regularization

Heat equation: $u_t = \nu u_{xx}$

$$(\text{Voigt}) \begin{cases} -\alpha^2 u_{xxt} + u_t = \nu u_{xx} \text{ on } (0, 2\pi) \times (0, T) \\ u(0, x) = u_0(x) \text{ on } (0, 2\pi) \end{cases}$$
$$\sum_{k \in \mathbb{Z}} (\alpha^2 k^2 + 1) \hat{u}_t^k e^{ikx} = \nu \sum_{k \in \mathbb{Z}} (-k^2) \hat{u}^k e^{ikx} \\ \hat{u}_t^k = \frac{-\nu k^2}{\alpha^2 k^2 + 1} \hat{u}^k \\ \hat{u}_t^k = \hat{u}_0^k \exp\left(\frac{-\nu k^2}{\alpha^2 k^2 + 1} t\right) \end{cases}$$

• Coefficients do not decay exponentially as $t \to \infty$. • As $k \to \infty$, we have the time scale α^2/ν .

The Euler-Voigt Model

The Euler-Voigt Model

Energy Balance

The Euler-Voigt Model

Energy Balance

$$\begin{cases} -\alpha^2 \triangle \partial_t \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0 \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}(0) = \mathbf{u}_0 \end{cases}$$

The Euler-Voigt Model

Energy Balance

$$\begin{cases} -\alpha^2 \triangle \partial_t \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0 \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}(0) = \mathbf{u}_0 \end{cases}$$
$$\frac{1}{2} \frac{d}{dt} \left(\alpha^2 \|\nabla \mathbf{u}\|_{L^2}^2 + \|\mathbf{u}\|_{L^2}^2 \right) = 0$$

The Euler-Voigt Model

Energy Balance

$$\begin{cases} -\alpha^2 \triangle \partial_t \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0 \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}(0) = \mathbf{u}_0 \end{cases}$$
$$\frac{1}{2} \frac{d}{dt} \left(\alpha^2 \| \nabla \mathbf{u} \|_{L^2}^2 + \| \mathbf{u} \|_{L^2}^2 \right) = 0$$

 $\alpha^2 \|\nabla \mathbf{u}(t)\|_{L^2}^2 + \|\mathbf{u}(t)\|_{L^2}^2 = \alpha^2 \|\nabla \mathbf{u}_0\|_{L^2}^2 + \|\mathbf{u}_0\|_{L^2}^2$
The Euler-Voigt Model

Energy Balance

$$\begin{cases} -\alpha^2 \triangle \partial_t \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0 \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}(0) = \mathbf{u}_0 \end{cases}$$
$$\frac{1}{2} \frac{d}{dt} \left(\alpha^2 \|\nabla \mathbf{u}\|_{L^2}^2 + \|\mathbf{u}\|_{L^2}^2 \right) = 0$$

Modified Energy Equality (Cao, Lunasin, Titi, 2006)

$$\alpha^2 \|\nabla \mathbf{u}(t)\|_{L^2}^2 + \|\mathbf{u}(t)\|_{L^2}^2 = \alpha^2 \|\nabla \mathbf{u}_0\|_{L^2}^2 + \|\mathbf{u}_0\|_{L^2}^2$$

Analytical Results: Regularity

(1)
$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}) \end{cases}$$

Theorem (Global Existence and Uniqueness)(Y. Cao, Lunasin, Titi, 2006)

Let $\mathbf{u}_0 \in H^1$, $\nu \ge 0$. Then system (1) has a unique solution in $C^1((-\infty,\infty), H^1)$ under either periodic or (if $\nu > 0$) homogeneous Dirichlet (no-slip) boundary conditions.

Analytical Results: Regularity

(1)
$$\begin{cases} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}) \end{cases}$$

Theorem (Global Existence and Uniqueness)(Y. Cao, Lunasin, Titi, 2006)

Let $\mathbf{u}_0 \in H^1$, $\nu \ge 0$. Then system (1) has a unique solution in $C^1((-\infty,\infty), H^1)$ under either periodic or (if $\nu > 0$) homogeneous Dirichlet (no-slip) boundary conditions.

Theorem $(H^s \text{ Regularity and Analyticity})(\text{Larios, Titi, 2010})$

Let $\mathbf{u}_0 \in H^s$, $s \ge 0$, $\nu \ge 0$. Then system (1) has a unique solution in $C^1((-\infty,\infty), V \cap H^s)$, under periodic boundary conditions. Furthermore, if $\mathbf{u}_0 \in V \cap C^{\omega}$, then $\mathbf{u} \in C^1((-\infty,\infty), V \cap C^{\omega})$.

Analytical Results: Convergence

- Given initial data $\mathbf{u}_0 \in H^s$, $s \geq 3$.
- Let \mathbf{u} be a solution to the Euler equations with initial data \mathbf{u}_0 .
- Let \mathbf{u}^{α} be a solution of the Euler-Voigt equations with initial data \mathbf{u}_0 .

Theorem (Convergence)(Larios, Titi, 2010)

Suppose $\mathbf{u} \in C([0, T], H^s) \cap C^1([0, T], H^{s-1})$ for $s \ge 3$. Then $\mathbf{u}^{\alpha} \to \mathbf{u}$ in $L^{\infty}([0, T], L^2)$.

Analytical Results: Convergence

- Given initial data $\mathbf{u}_0 \in H^s$, $s \geq 3$.
- Let ${f u}$ be a solution to the Euler equations with initial data ${f u}_0.$
- Let \mathbf{u}^{α} be a solution of the Euler-Voigt equations with initial data \mathbf{u}_{0} .

Theorem (Convergence)(Larios, Titi, 2010)

Suppose $\mathbf{u} \in C([0, T], H^s) \cap C^1([0, T], H^{s-1})$ for $s \ge 3$. Then $\mathbf{u}^{\alpha} \to \mathbf{u}$ in $L^{\infty}([0, T], L^2)$.

Specifically,

$$\|\mathbf{u}(t) - \mathbf{u}^{\alpha}(t)\|_{L^{2}}^{2} + \alpha^{2} \|\nabla(\mathbf{u}(t) - \mathbf{u}^{\alpha}(t))\|_{L^{2}}^{2} \leq C\alpha^{2}.$$

Analytical Results: Blow-Up Criterion

Consider the α -energy equality on [0, T], an interval of existence and uniqueness for the 3D Euler equations. For $t \in [0, T]$,

$$\|\mathbf{u}^{\alpha}(t)\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \mathbf{u}^{\alpha}(t)\|_{L^{2}}^{2} = \|\mathbf{u}_{0}\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \mathbf{u}_{0}\|_{L^{2}}^{2}$$

Analytical Results: Blow-Up Criterion

Consider the α -energy equality on [0, T], an interval of existence and uniqueness for the 3D Euler equations. For $t \in [0, T]$,

$$\|\mathbf{u}^{\alpha}(t)\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \mathbf{u}^{\alpha}(t)\|_{L^{2}}^{2} = \|\mathbf{u}_{0}\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \mathbf{u}_{0}\|_{L^{2}}^{2}$$

$$\|\mathbf{u}(t)\|_{L^2}^2 + \limsup_{\alpha \to 0} \alpha^2 \|\nabla \mathbf{u}^{\alpha}(t)\|_{L^2}^2 = \|\mathbf{u}_0\|_{L^2}^2$$

Analytical Results: Blow-Up Criterion

Consider the α -energy equality on [0, T], an interval of existence and uniqueness for the 3D Euler equations. For $t \in [0, T]$,

$$\|\mathbf{u}^{\alpha}(t)\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \mathbf{u}^{\alpha}(t)\|_{L^{2}}^{2} = \|\mathbf{u}_{0}\|_{L^{2}}^{2} + \alpha^{2} \|\nabla \mathbf{u}_{0}\|_{L^{2}}^{2}$$

$$\|\mathbf{u}(t)\|_{L^2}^2 + \limsup_{\alpha \to 0} \alpha^2 \|\nabla \mathbf{u}^{\alpha}(t)\|_{L^2}^2 = \|\mathbf{u}_0\|_{L^2}^2$$

Theorem (Blow-up Criterion)(Larios, Titi, 2010)

Suppose there exists a finite time $T_* > 0$ such that

$$\sup_{t\in[0,T_*)}\limsup_{\alpha\to 0} \alpha^2 \|\nabla \mathbf{u}^{\alpha}(t)\|_{L^2}^2 > 0.$$

Then the Euler equations with initial data \mathbf{u}_0 develop a singularity in the interval $[0, T_*]$.

Adam Larios (Texas A&M)

Analytical Results: Blow-Up Criterion

Theorem (Blow-up Criterion)(Larios, Titi)

Suppose there exists a finite time $T_* > 0$ such that

$$\sup_{t\in[0,T_*)}\limsup_{\alpha\to 0} \alpha^2 \|\nabla \mathbf{u}^{\alpha}(t)\|_{L^2}^2 > 0.$$

Then the Euler equations with initial data \mathbf{u}_0 develop a singularity in the interval $[0, T_*]$.

Remark

Unlike the Beale-Kato-Majda criterion, in which one tracks a quantity arising from an equation which is not known to be well-posed, here we track a quantity which arises from a well-posed equation.

Surface Quasi-Geostrophic Equations

$$\begin{aligned} -\alpha^2 \partial_t \Delta \theta + \partial_t \theta + (\mathbf{v} \cdot \nabla) \theta &= 0\\ \mathbf{v} &= \nabla^{\perp} (-\Delta)^{-1/2} \theta\\ \theta(\mathbf{x}, 0) &= \theta_0(\mathbf{x}) \end{aligned}$$

Surface Quasi-Geostrophic Equations

$$\begin{aligned} -\alpha^2 \partial_t \triangle \theta + \partial_t \theta + (\mathbf{v} \cdot \nabla) \theta &= 0\\ \mathbf{v} &= \nabla^{\perp} (-\triangle)^{-1/2} \theta\\ \theta(\mathbf{x}, 0) &= \theta_0(\mathbf{x}) \end{aligned}$$

Khouider, Titi, 2008

- Global Regularity
- Convergence
- Blow-up criterion

(2)

$$\partial_{t}\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p + \frac{1}{2}\nabla|\mathcal{B}|^{2} = (\mathcal{B} \cdot \nabla)\mathcal{B},$$
$$\partial_{t}\mathcal{B} + (\mathbf{u} \cdot \nabla)\mathcal{B} + \nabla q = (\mathcal{B} \cdot \nabla)\mathbf{u},$$
$$\nabla \cdot \mathcal{B} = \nabla \cdot \mathbf{u} = 0,$$
$$\mathcal{B}(0) = \mathcal{B}_{0}, \ \mathbf{u}(0) = \mathbf{u}_{0}.$$

(2)

$$\partial_{t}\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p + \frac{1}{2}\nabla|\mathcal{B}|^{2} = (\mathcal{B}\cdot\nabla)\mathcal{B},$$
$$\partial_{t}\mathcal{B} + (\mathbf{u}\cdot\nabla)\mathcal{B} + \nabla q = (\mathcal{B}\cdot\nabla)\mathbf{u},$$
$$\nabla\cdot\mathcal{B} = \nabla\cdot\mathbf{u} = 0,$$
$$\mathcal{B}(0) = \mathcal{B}_{0}, \ \mathbf{u}(0) = \mathbf{u}_{0}.$$

(2)

$$\partial_{t}\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p + \frac{1}{2}\nabla|\mathcal{B}|^{2} = (\mathcal{B} \cdot \nabla)\mathcal{B},$$
$$\partial_{t}\mathcal{B} + (\mathbf{u} \cdot \nabla)\mathcal{B} + \nabla q = (\mathcal{B} \cdot \nabla)\mathbf{u},$$
$$\nabla \cdot \mathcal{B} = \nabla \cdot \mathbf{u} = 0,$$
$$\mathcal{B}(0) = \mathcal{B}_{0}, \ \mathbf{u}(0) = \mathbf{u}_{0}.$$

(2)
$$\begin{cases} -\alpha^{2}\partial_{t}\Delta\mathbf{u} + \partial_{t}\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p + \frac{1}{2}\nabla|\mathcal{B}|^{2} = (\mathcal{B}\cdot\nabla)\mathcal{B}, \\ -\alpha_{M}^{2}\partial_{t}\Delta\mathcal{B} + \partial_{t}\mathcal{B} + (\mathbf{u}\cdot\nabla)\mathcal{B} + \nabla q = (\mathcal{B}\cdot\nabla)\mathbf{u}, \\ \nabla\cdot\mathcal{B} = \nabla\cdot\mathbf{u} = 0, \\ \mathcal{B}(0) = \mathcal{B}_{0}, \ \mathbf{u}(0) = \mathbf{u}_{0}. \end{cases}$$

The 3D Magnetohydrodynamic-Voigt Model (Inviscid, Irresistive)

(2)
$$\begin{cases} -\alpha^{2}\partial_{t}\Delta\mathbf{u} + \partial_{t}\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p + \frac{1}{2}\nabla|\mathcal{B}|^{2} = (\mathcal{B}\cdot\nabla)\mathcal{B}, \\ -\alpha_{M}^{2}\partial_{t}\Delta\mathcal{B} + \partial_{t}\mathcal{B} + (\mathbf{u}\cdot\nabla)\mathcal{B} + \nabla q = (\mathcal{B}\cdot\nabla)\mathbf{u}, \\ \nabla\cdot\mathcal{B} = \nabla\cdot\mathbf{u} = 0, \\ \mathcal{B}(0) = \mathcal{B}_{0}, \ \mathbf{u}(0) = \mathbf{u}_{0}. \end{cases}$$

Theorem (Global Regularity)(Larios, Titi, 2010)

Let $\mathbf{u}_0, \mathcal{B}_0 \in H^s$, for $s \ge 1$. Then (2) has a unique solution $(\mathbf{u}, \mathcal{B}) \in C^1((-\infty, \infty), H^s)$.

The 3D MHD-Voigt Model (Inviscid, Resistive)

(3)
$$\begin{cases} -\alpha^{2}\partial_{t}\Delta\mathbf{u} + \partial_{t}\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p + \frac{1}{2}\nabla|\mathcal{B}|^{2} = (\mathcal{B}\cdot\nabla)\mathcal{B}, \\ -\mu\Delta\mathcal{B} + \partial_{t}\mathcal{B} + (\mathbf{u}\cdot\nabla)\mathcal{B} + \nabla q = (\mathcal{B}\cdot\nabla)\mathbf{u}, \\ \nabla\cdot\mathcal{B} = \nabla\cdot\mathbf{u} = 0, \\ \mathcal{B}(0) = \mathcal{B}_{0}, \ \mathbf{u}(0) = \mathbf{u}_{0}. \end{cases}$$

The 3D MHD-Voigt Model (Inviscid, Resistive)

The Magnetohydrodynamic-Voigt Model (Inviscid, Resistive)

(3)
$$\begin{cases} -\alpha^{2}\partial_{t}\Delta\mathbf{u} + \partial_{t}\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p + \frac{1}{2}\nabla|\mathcal{B}|^{2} = (\mathcal{B}\cdot\nabla)\mathcal{B}, \\ -\mu\Delta\mathcal{B} + \partial_{t}\mathcal{B} + (\mathbf{u}\cdot\nabla)\mathcal{B} + \nabla q = (\mathcal{B}\cdot\nabla)\mathbf{u}, \\ \nabla\cdot\mathcal{B} = \nabla\cdot\mathbf{u} = 0, \\ \mathcal{B}(0) = \mathcal{B}_{0}, \ \mathbf{u}(0) = \mathbf{u}_{0}. \end{cases}$$

Theorem (Global Regularity)(Larios, Titi, 2011)

Let $\mathbf{u}_0, \mathcal{B}_0 \in H^s(\mathbb{T}^3) \cap V$, for $s \ge 1$. Then (3) has a unique solution $(\mathbf{u}, \mathcal{B}) \in C^1((-\infty, \infty), H^s(\mathbb{T}^3) \cap V)$.

Independently studied by Catania, Secchi, 2010, with strong initial data.

The Boussinesg Equations

Momentum Equation

Continuity Equation

 $\nabla \cdot \mathbf{n} = 0$

Transport Equation

by Velocity Diffusion

u := Velocity (vector field)

 $\nu :=$ Kinematic Viscosity

 $\theta :=$ Scalar variable (density or heat) $\mathbf{k} := (0, 1)$ or (0, 0, 1)

p :=Pressure (scalar function) $\kappa :=$ Diffusion Coefficient

The Boussinesq Equations

Momentum Equation

Continuity Equation

 $\nabla \cdot \mathbf{u} = 0$

Transport Equation

 $\mathbf{u} := \mathsf{Velocity} \; (\mathsf{vector} \; \mathsf{field})$

 $\nu :=$ Kinematic Viscosity

 $\theta :=$ Scalar variable (density or heat) $\mathbf{k} := (0,1)$ or (0,0,1)

p := Pressure (scalar function) $\kappa := \text{Diffusion Coefficient}$ $\mathbf{k} := (0, 1) \text{ or } (0, 0, 1)$

The Boussinesq-Voigt Equations (2D or 3D)

$$\begin{aligned} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p &= \theta \mathbf{k} + \nu \Delta \mathbf{u}, \quad \alpha > 0, \\ \nabla \cdot \mathbf{u} &= 0 \\ \partial_t \theta + (\mathbf{u} \cdot \nabla) \theta &= \kappa \Delta \theta. \end{aligned}$$

The Boussinesq-Voigt Equations (2D or 3D)

$$\begin{aligned} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p &= \theta \mathbf{k} + \nu \Delta \mathbf{u}, \quad \alpha > 0, \\ \nabla \cdot \mathbf{u} &= 0 \\ \partial_t \theta + (\mathbf{u} \cdot \nabla) \theta &= \kappa \Delta \theta. \end{aligned}$$

Theorem (Oskolkov, 1976)(3D, $\nu > 0$, $\kappa > 0$)

Let $\mathbf{u}_0 \in H^2$, $\theta_0 \in H^2$. Then there exists a unique global solution to (4).

The Boussinesq-Voigt Equations (2D or 3D)

$$\begin{aligned} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p &= \theta \mathbf{k} + \nu \Delta \mathbf{u}, \quad \alpha > 0, \\ \nabla \cdot \mathbf{u} &= 0 \\ \partial_t \theta + (\mathbf{u} \cdot \nabla) \theta &= \kappa \Delta \theta. \end{aligned}$$

Theorem (Oskolkov, 1976)(3D, $\nu > 0$, $\kappa > 0$)

Let $\mathbf{u}_0 \in H^2$, $\theta_0 \in H^2$. Then there exists a unique global solution to (4).

Theorem (Larios, Lunasin, Titi, 2011)(3D, $\nu = 0$, $\kappa > 0$)

Let $\mathbf{u}_0 \in H^2$, $\theta_0 \in L^2$. Then there exists a unique global solution to (4).

The Boussinesq-Voigt Equations (2D or 3D)

$$\begin{aligned} -\alpha^2 \partial_t \Delta \mathbf{u} + \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p &= \theta \mathbf{k} + \nu \Delta \mathbf{u}, \quad \alpha > 0, \\ \nabla \cdot \mathbf{u} &= 0 \\ \partial_t \theta + (\mathbf{u} \cdot \nabla) \theta &= \kappa \Delta \theta. \end{aligned}$$

Theorem (Oskolkov, 1976)(3D, $\nu > 0$, $\kappa > 0$)

Let $\mathbf{u}_0 \in H^2$, $\theta_0 \in H^2$. Then there exists a unique global solution to (4).

Theorem (Larios, Lunasin, Titi, 2011)(3D, $\nu = 0, \kappa > 0$)

Let $\mathbf{u}_0 \in H^2$, $\theta_0 \in L^2$. Then there exists a unique global solution to (4).

Theorem (Larios, Lunasin, Titi, 2011)(2D, $\nu = \kappa = 0$)

Let $\mathbf{u}_0 \in H^2$, $\theta_0 \in L^2$. Then there exists a unique global solution to (4).

Tools for Uniqueness Proof

• Stream-like function: $\theta = \triangle \xi$ (mean-zero)

- Stream-like function: $\theta = \triangle \xi$ (mean-zero)
- Yudovich-type estimates (as in anisotropic case)

- Stream-like function: $\theta = \triangle \xi$ (mean-zero)
- Yudovich-type estimates (as in anisotropic case)

- Stream-like function: $\theta = riangle \xi$ (mean-zero)
- Yudovich-type estimates (as in anisotropic case)

Theorem (Modified Brézis-Gallouet Inequality)(Larios, Lunasin, Titi, 2011) For every $\epsilon > 0$, sufficiently small, and $\mathbf{w} \in H^2(\mathbb{T}^2)$, $\|\mathbf{w}\|_{L^{\infty}} \leq C \left(\|\nabla \mathbf{w}\|_{L^2} \epsilon^{-1/4} + \|\Delta \mathbf{w}\|_{L^2} e^{-1/\epsilon^{1/4}} \right)$,

where C is independent of ϵ .

Convergence as $\alpha \to 0$

Theorem (Larios, Lunasin, Titi, 2011)

Given initial data $\mathbf{u}_0, \theta_0 \in H^3$, choose an arbitrary $T \in (0, T_{max})$, where T_{max} is the maximal time for which a solution to the Boussinesq-Voigt equations exists and is unique. Then $\mathbf{u}^{\alpha} \to \mathbf{u}$ in $L^2([0, T], H^1)$ and $\theta^{\alpha} \to \theta$ in $L^2([0, T], L^2)$.

Blow-up Criterion

Energy Balance Equation

$$\alpha^{2} \|\mathbf{u}^{\alpha}(t)\|^{2} + |\mathbf{u}^{\alpha}(t)|^{2} = \alpha^{2} \|\mathbf{u}_{0}\|^{2} + |\mathbf{u}_{0}|^{2} + 2\int_{0}^{t} (\theta^{\alpha}(s)\mathbf{k}, \mathbf{u}^{\alpha}(s)) \, ds.$$

Theorem (Larios, Lunasin, Titi, 2011)

Given initial data $\mathbf{u}_0, \theta_0 \in H^3$, suppose that for some $T_* < \infty$, we have

$$\sup_{t\in[0,T_*)}\limsup_{\alpha\to 0}\alpha^2 \|\mathbf{u}^{\alpha}(t)\|^2 > 0.$$

Then the solutions to the 2D Boussinesq become singular in the time interval $[0, T_*)$.

• The Voigt-regularization may be useful as a regularization for the Euler and Navier-Stokes equations.

- The Voigt-regularization may be useful as a regularization for the Euler and Navier-Stokes equations.
- $\bullet\,$ Numerical studies indicate that small α values give a good match with statistics.

- The Voigt-regularization may be useful as a regularization for the Euler and Navier-Stokes equations.
- $\bullet\,$ Numerical studies indicate that small α values give a good match with statistics.
- Convergence as $\alpha \to 0$.

- The Voigt-regularization may be useful as a regularization for the Euler and Navier-Stokes equations.
- \bullet Numerical studies indicate that small α values give a good match with statistics.
- Convergence as $\alpha \to 0$.
- A new blow-up criterion for 3D Euler equations.

- The Voigt-regularization may be useful as a regularization for the Euler and Navier-Stokes equations.
- $\bullet\,$ Numerical studies indicate that small α values give a good match with statistics.
- Convergence as $\alpha \to 0$.
- A new blow-up criterion for 3D Euler equations.
- Similar results for SQG, MHD, and Boussinesq equations.
• How well does the Voigt-regularization do in terms of improving computational simulations?

- How well does the Voigt-regularization do in terms of improving computational simulations?
- Test the blow-up criterion numerically.

- How well does the Voigt-regularization do in terms of improving computational simulations?
- Test the blow-up criterion numerically.
- Prove the convergence of solutions to Voigt-regularized equations in higher-order norms.

- How well does the Voigt-regularization do in terms of improving computational simulations?
- Test the blow-up criterion numerically.
- Prove the convergence of solutions to Voigt-regularized equations in higher-order norms.
- Can the stream-function approach be adapted to a yield any useful numerical techniques?

- How well does the Voigt-regularization do in terms of improving computational simulations?
- Test the blow-up criterion numerically.
- Prove the convergence of solutions to Voigt-regularized equations in higher-order norms.
- Can the stream-function approach be adapted to a yield any useful numerical techniques?
- Improve the result for the 3D Boussinesq-Voigt equations even further. Can we drop the requirement that $\kappa > 0$? Can require only $\mathbf{u}_0 \in H^1$?

- How well does the Voigt-regularization do in terms of improving computational simulations?
- Test the blow-up criterion numerically.
- Prove the convergence of solutions to Voigt-regularized equations in higher-order norms.
- Can the stream-function approach be adapted to a yield any useful numerical techniques?
- Improve the result for the 3D Boussinesq-Voigt equations even further. Can we drop the requirement that $\kappa > 0$? Can require only $\mathbf{u}_0 \in H^1$?
- Extend the Voigt-regularization to other fluid models.

Happy Birthday Professor Constantin!